Krzysztof Matyjaszewski and Stanislaw Penczek

Polish Academy of Sciences, Center of Molecular and Macromolecular Studies, 90-362 Lódź, Poland.

Emile Franta

Centre de Recherches Macromoleculaires, CNRS, Strasbourg, France.

(Received 18 June 1979)

Independent n.m.r. observation of macroesters and macroions in the polymerization of THF^{1, 2}, for systems initiated with strong acids or their derivatives bearing anions able to form covalent bonds^{3, 4} allowed the corresponding thermodynamic equilibrium constants K_e to be determined ⁵: e.g.

$$-CH_{2}CH_{2}CH_{2}CH_{2}OCH_{2}CH_{2}CH_{2}CH_{2}OSO_{2}CF_{3}$$

$$\xrightarrow{k_{ii}}_{k_{tt}} -CH_{2}CH_{2}CH_{2}CH_{2}OC$$

where $K_e = k_{ii}/k_{tt}$

 K_e were measured by us previously⁶ for sufficiently low concentration of the growing macrocations to avoid the complicating influence of agglomeration of the macroionpairs⁷ and at conditions when dissociation of macroionpairs does not upset equilibrium (1).

In order to complete these data and to see whether the nucleophilicities of anions correlate with K_e , we studied polymerization of THF with ClO₄ anion.

Experimental

1,3-dioxolane-2-ylium perchlorate (I) was prepared from 1,3-dioxolane and $(C_6H_5)_3 C^+ ClO_4^-$ by H⁻ transfer method as described previously.⁸ Caution: I is a powerful explosive when in a dry state and has to be handled with extreme care and only in small quantities. It can be stored below -20° without noticeable decomposition for at least several days. Initiation of THF with I proceeds with a rate constant k_i comparable to k_p .

THF was purified as previously described.

Solvents: CD_2Cl_2 (IZS, GDR) was dried over D_2SO_4 and then distilled twice over fresh Na-mirrors. CD_3NO_2 was dried with CaH_2 and distilled *in vacuo* into a flask with fresh CaH_2 .

Filling of the n.m.r. tubes was performed *in vacuo* as it was already described.

Measurements were performed by $FT^{-1}H$ -n.m.r. (250 MHz) Cameca.

*Authors are highly indebted to Mr R. Graaf for his kind assistance during n.m.r. experiments.

0032-3861/79/101184-02\$02.00 © 1979 IPC Business Press

1184 POLYMER, 1979, Vol 20, October

Results and Discussion

The 250 MHz FT-¹H-n.m.r. spectrum of the region from 4.15 to 5.0 ppm δ is shown in *Figure 1*.

Below, chemical shifts observed in Figure 1 are assigned to their chemical origins (in ppm δ from TMS).

The ratio of the A/B signals was equal to 1/2 in all of the spectra recorded, and the ratio (A + B)/C depended on the temperature and polarity of the medium as for trifluoric and fluorosulphonic anions ⁵.

When macroions are practically absent and only macroesters and macroion-pairs are present the equilibrium constant K_e is directly given by ratio of the peak area (cf. equation (1)): $K_e = (A + B)/3C$.

When equilibrium (1) has to be complemented (in more polar solvents) by macroions:

then

[ative species] =
$$([I_0]) = [P^+] + [P^\pm] + [E]$$
 (3a)

$$|I|_0 = [P^*] \left(1 + \frac{[P^*]}{K_D} \frac{(1+K_e)}{K_D}\right)$$
 (3b)

and, eventually:

$$\frac{[P^{+}] + [P^{\pm}]}{[I]_{0}} = \frac{1 + 2/K_{e} + (1 + 4[I]_{0}(1 + K_{e})/K_{e} \cdot K_{D})^{\frac{1}{2}}}{1 + (1 + 4[I]_{0}(1 + K_{e})/K_{e} \cdot K_{D})^{\frac{1}{2}}} \times \frac{K_{e}}{1 + K_{e}}$$
(3c)

Figure 1 ¹H-N.M.R. spectrum of the region of living ends (4.15-5.00 ppm δ) in polymerization of THF with ClO₄ anion at 20° [THF]₀ = 8.0 mol⁻¹ CD₃NO₂ : CD₂Cl₂ = 0.89 (molar ratio) [/]₀ = 5 x 10⁻² mol x 1⁻¹.

Thus, for conditions including macroions actual values of K_e can be found from equation (3c), if it is assumed that K_D values do not change in the presence of a macroester. K_D is almost independent on anion structure ⁹

Below, in *Table 1*, the results of measurements of K_e are given, as measured by ¹H-N.M.R. and calculated from equation (3c).

Thus, at 20°C, in CH₂Cl₂ solvent and in CH₃NO₂ solvent ([THF]₀ = 8.0 mol × 1⁻¹ for both cases) K_e equals 9.5 and .09 respectively.

$$k_p^{app}/k_p^i = \frac{[P^+] + [P^\pm]}{[I]_0} = \frac{K'_e}{1 + K'_e}$$
(4)

where

$$K'_{e} = K_{e} \frac{1 + 2/K_{e} + (1 + 4[I]_{0}(1 + K_{e})/K_{e} \cdot K_{D})^{\frac{1}{2}}}{(1 + 4[I]_{0}(1 + K_{e})/K_{e} \cdot K_{D})^{\frac{1}{2}} - 1}$$

and assuming that the rate constant of propagation with $ClO_{\overline{4}}$ anions $(k_p, ClO_{\overline{4}})$ is equal to that with other anions (the dependence of k_p on anion structure is described in *Ref.* 6).

Kinetic measurements allowed also K_e to be determined in CCl₄ solvent, where concentration of macroions is too small to be observed by n.m.r. $K_e = 10^{-2}$ was found for [THF]₀ = 8.0 mol × 1⁻¹ at 25[°], in CCl₄ solvent.

The values of K_e determined for ClO_4^- anion in CH_3NO_2 and CH_2Cl_2 solvent shown in *Table 1*, can be compared with K_e determined earlier for CF_3SO_3^- and FSO_3^- anions (*Table 2*).

Comparison of acid strength (known to increase in the order $HClO_4 < FSO_3H < CF_3SO_3H$) with the determined K_e values indicates that, as it was supposed, the higher the

V _{CH3NO2} / V _{CH2} CI2	E	К _D , ^b mol ⁻¹ x 1 x 10 ⁻³	(P + + P [±])/ E	Ke
∞	20.2	6.0	11.3	9.5 9.0 ^c
2.5	17.0	3.3	3.1	2.2
0.75	13.5	1.4	1.7	1.4
0.425	12.0	0.78	1.2	1.0
0.167	10.0	0.27	0.41	0.33
0	8.1	0.068	0.10	0.9 0.9 ^c

^a[THF]₀ = 8.0 mol x 1^{-1} , 20°C, [/]₀ = variable

^btaken from Ref. 9 for SbF₆ anion

^cfrom kinetic measurements

Table 2 K_e values determined by ¹H-n.m.r. for macroester \Rightarrow macroion pair equilibrium

Solvent	CIO ₄	FSO3	CF3SO3
CH ₂ NO ₂	9.5	20	42
CH ₂ Cl ₂	0.09	0.27	0.58

^{*} [THF] ₀ = 8.0 mol 1⁻¹, 20°C, [/] ₀ = variable

nucleophilicity of the anion the higher the ability of macroion-pair to collapse into the macroester i.e. the lower the value K_e .

References

- I Matyjaszewski, K. and Penczek, St. J Polym Sci, Polym Chem Ed 1974, 12 1905
- 2 Kobayashi, S. and Saegusa, T. J Polym Sci, Polym Symp 1976, 56, 241
- Pruckmayr, G. and Wu, T.K. *Macromolecules* 1973, 6, 331
 Smith, S. and Hubin, A.J. *J Macromol Sci Chem* 1973, 7,
- 1399 5 Buyla A.M. Matuiagrouphi K. and Banagak St. Marra
- 5 Buyle, A.M., Matyjaszewski, K. and Penczek, St. Macromolecules 1977, 10, 269
- 6 Penczek, St. and Matyjaszewski, K. J Polym Sci, Polym Symp 1976, 56, 255
- 7 Matyjaszewski, K. and Penczek, St. J Polym Sci, Polym Chem Ed 1977, 15, 241
- 8 Stolarczyk, A., Kubisa, P. and Penczek, St. J Macromol Sci (Chem) 1977 11 2047
- 9 Matyjaszewski, K., Slomkowski, St. and Penczek, St. J Polym Sci Polym Chem Ed 1979, 17, 69